วันอังคารที่ 10 เมษายน พ.ศ. 2555

โมเด็ม (Modem)
โมเด็ม ( Modem : Modulator Demodulator) หมายถึง อุปกรณ์สำหรับการแปลงสัญญาณดิจิตอล (Digital) จากคอมพิวเตอร์ด้านผู้ส่ง เพื่อส่งไปตามสายสัญญาณข้อมูลแบบอนาลอก(Analog) เมื่อถึงคอมพิวเตอร์ด้านผู้รับ โมเด็มก็จะทำหน้าที่แปลงสัญญาณอนาลอก ให้เป็นดิจิตอลนำเข้าสู่เครื่องคอมพิวเตอร์ เพื่อทำการประมวลผล โดยปกติจะใช้โมเด็มกับระบบเครือข่ายระยะไกล โดยการใชสายโทรศัพท์เป็นสื่อกลาง เช่น เครือข่ายอินเทอร์เน็ต
Modem มี 3 ชนิดคือ
1.
Internal Modem เป็น Card Adapter ที่เสียบเข้าไปใน slot ของคอมพิวเตอร์ โดยมีวงจรพอร์ต อนุกรมของตัวเอง (COM3,COM4) และใช้พลังงานร่วมกับคอมพิวเตอร์



 
2. External Modem เป็นกล่องที่บรรจุวงจร modem มีแหล่งพลังงานของตัวเอง และจะต่อกับพอร์ต อนุกรม(COM1,COM2)ของคอมพิวเตอร์

3. wireless modem หรือ โมเด็มไร้สาย มีลักษณะคล้ายกับโมเด็มภายนอก โดยโมเด็มภายนอกจะเชื่อมต่อกับคอมพิวเตอร์ทาง serial port โดยใช้สายทางโทรศัพท์ ในขณะที่โมเด็มไร้สายจะไม่ใช้สายโทรศัพท์เพื่อเชื่อมต่อ แต่จะสื่อสารโดยใช้คลื่นแม่เหล็กไฟฟ้าเป็นสื่อ


อุปกรณ์สื่อสารข้อมูล (Data Communictaion Equipment)
ซึ่งอาจแบ่งได้เป็น
อุปกรณ์รวมสัญญาณ
มัลติเพล็กซ์เซอร์ (Muliplexer)
นิยมเรียกกันว่า มัก (MUX) จะเป็นอุปกรณ์ที่ใช้ในการลดค่าใช้จ่ายในการส่งข้อมูลผ่านสายสื่อสาร โดยจะทำการ รวมข้อมูล (multiplex) จากเครื่องเทอร์มินัลจำนวนหนึ่งเข้าด้วยกัน และส่งผ่านสายสื่อสาร เช่น สายโทรศัพท์ และที่ปลายทาง MUX มักอีกตัวก็จะทำหน้าที่ แยกข้อมูล (demultiplex) ส่งไปยังจุดหมายที่ต้องการ
คอนเซนเตรเตอร์ (Concentrator)
นิยมเรียกกันว่า คอนเซน จะเป็นมัลติเพลกเซอร์ที่มีประสิทธิภาพสูงขึ้น โดยจะสามารถทำการเก็บข้อมูลเพื่อส่งต่อ (store and forward) โดยใช้หน่วยความจำ buffer ทำให้สามารถเชื่อมต่อระหว่างอุปกรณ์ที่มีความเร็วสูงกับความเร็วต่ำได้ รวมทั้งอาจมีการบีบอัดข้อมูล (compress) เพื่อให้สามารถส่งข้อมูลได้มากขึ้น
ฮับ (Hub)
สามารถเรียกอีกอย่างหนึ่งว่า LAN Concentrator เนื่องจากฮับจะทำหน้าที่เช่นเดียวกับคอนเซน แต่จะมีราคาถูกกว่า นิยมใช้ในเครือข่าย LAN รุ่นใหม่ ๆ โดยใช้อับในการเชื่อมสายสัญญาณจากหลาย ๆ จุดเข้าเป็นจุดเดียวในโทโปโลยีของ LAN แบบ Star เช่น 10BaseT เป็นต้น
ฮับสามารถแบ่งได้เป็น 2 ประเภท คือ
Passive Hub เป็นฮับที่ไม่มีการขยายสัญญาณใด ๆ ที่ส่งผ่านมา มีข้อดีคือราคาถูกและไม่จำเป็นต้องใช้พลังงานไฟฟ้า
Active Hub ทำหน้าที่เป็นเครื่องทวนซ้ำสัญญาณในตัว นั่นคือจะขยายสัญญาณที่ส่งผ่านมาสามารถทำให้เชื่อมต่ออุปกรณ์ต่าง ๆ ผ่านสายเคเบิลได้ไกลขึ้น และเนื่องจากต้องทำการขยายสัญญาณทำให้ ต้องใช้พลังงานไฟฟ้าด้วย จึงเป็นข้อเสียที่ต้องมีปลั๊กไฟในการใช้งานเสมอ
ฟรอนต์เอนต์โปรเซสเซอร์ (Front-End Processor)
มีหน้าที่การทำงานเช่นเดียวกับคอนเซนเตรเตอร์ แต่โดยปกติจะเป็นเครื่องคอมพิวเตอร์ที่ทำงานนี้โดยเฉพาะเครื่องหนึ่ง ซึ่งจะมีปลายด้านหนึ่งที่ทำการเชื่อมโยงด้วยความเร็วสูงเข้ากับเครื่องคอมพิวเตอร์หลัก เช่น เมนเฟรม และปลายอีกด้านจะเชื่อมเข้ากับสายสื่อสารและอุปกรณ์อื่น ๆ ฟรอนต์เอนต์โปรเซสเซอร์จะพบมากในระบบขนาดใหญ่ เพื่อช่วยลดภาระในการติดต่อกับอุปกรณ์รอบข้างให้กับเครื่องคอมพิวเตอร์หลัก (Host)
อุปกรณ์เชื่อมต่อเครือข่าย
เครื่องทวนซ้ำสัญญาณ (Repeater)
เป็นอุปกรณ์ที่ทำงานอยู่ในระดับ Physical Layer ใน OSI Model มีหน้าที่เป็นอุปกรณ์เชื่อมต่อสำหรับขยายสัญญาณให้กับเครือข่าย และไม่รู้จักลักษณะของข้อมูลที่แฝงมากับสัญญาณเลย
บริดจ์ (Bridge)
ใช้ในการเชื่อมต่อ วงแลน (LAN Segments) เข้าด้วยกัน ทำให้สามารถขยายขอบเขตของ LAN ออกไปได้เรื่อย ๆ โดยที่ประสิทธภาพรวมของระบบไม่ลดลงมากนัก เนื่องจากการติดต่ออของเครื่องที่อยู่ในเซกเมนต์เดียวกัน จะไม่ถูกส่งผ่านบริดจ์ไปรบกวนการจราจรของเซกเมนต์อื่น และเนื่องจากบริดจ์เป็นอุปกรณ์ที่ทำงานอยู่ระดับ Data Link Layer ใน OSI Modelทำให้สามารถใช้ในการเชื่อมต่อเครือข่ายที่แตกต่างกันระดับ Physical และ Data Link ได้ เช่น ระหว่าง Ethernet กับ Token Rink เป็นต้น ซึ่งอาจเชื่อมต่อระหว่าง LAN ที่อยู่บริเวณเดียวกันหรือเชื่อม LAN ที่อยู่ ห่างกันผ่านทางสื่อสาธารณะ เช่น สายโทรศัพท์ด้วย บริดจ์ระยะไกล (Remote Bridge) โดยบริดจ์อาจเป็นได้ทั้งฮาร์ดแวร์เฉพาะ หรือซอฟต์แวร์บนเครื่องคอมพิวเตอร์ที่กำหนดให้เป็นบริดจ์ก็ได้


สวิตซ์ (Switch)
หรือที่นิยมเรียกว่า อีเธอร์เนตสวิตซ์ (Ethernet Switch) จะเป็น บริดจ์แบบหลายช่องทาง (multiport bridge) ที่นิยมใช้ในระบบเครือข่ายแลนแบบ Ethernetเพื่อใช้เชื่อมต่อเครือข่ายหลาย ๆ เครือข่าย (segment) เข้าด้วยกัน สวิตซ์จะช่วยละการจราจรระหว่างเครือข่ายที่ไม่จำเป็น (ตามคุณสมบัติของบริดจ์) และเนื่องจากการเชื่อมต่อแต่ละช่องทางการะทำอยู่ภายในตัวสวิตซ์เอง ทำให้สามารถทำการแลกเปลี่ยนข้อมูลในแต่ละเครือข่าย (Switching) ได้อย่างรวดเร็วกว่าการใช้บริดจ์จำนวนหลาย ๆ ตัวเชื่อมต่อกัน
นอกจากนี้ สวิตซ์ยังสามารถใช้เชื่อมเครื่องคอมพวิเตอร์เพียงเครื่องเดียวเข้ากับสวิตซ์ ซึ่งจะทำให้เครื่อง ๆ นั้น สามารถติดต่อกับเซิร์ฟเวอร์ด้วยความเร็วเต็มความสามารถของช่องทางการสื่อสาร เช่น 10 Mbps ในกรณีเป็น 10BaseT เป็นต้น เนื่องจากไม่ต้องทำการแบ่งช่องทางการสื่อสารข้อมูลกับเครื่องอื่น ๆ เลย
เราท์เตอร์ (Router)
เป็นอุปกรณ์ที่ทำงานอยู่ในระดับที่อยู่สูงกว่าบริดจ์ นั่นคือในระดับ Network Layer ใน OSI Model ทำให้สามารถใช้ในการเชื่อมต่อระหว่างเครือข่ายที่ใช้โปรโตคอลเครือข่ายต่างกันและสามารถทำการ กรอง (filter) เลือกเฉพาะชนิดของข้อมูลที่ระบุไว้ว่าให้ผ่านไปได้ ทำให้ช่วยลดปัญหาการจราจรที่คับคั่งของข้อมูล และเพิ่มระดับความปลอดภัยของเครือข่าย นอกจากนี้เราท์เตอร์ยังสามารถหาเส้นทางการส่งข้อมูลที่เหมาะสมให้โดยอัตโนมัติด้วย (ในกรณที่สามารถส่งได้หลายเส้นทาง ) เราท์เตอร์จะเป็นอุปกรณืที่ขึ้นอยู่กับโปรโตคอล นั่นคือในการใช้งานจะต้องเลือกซื้อเราท์เตอร์ที่สนับสนุนโปรโตคอลของเครือข่ายที่ต้องการจะเชื่อมต่อเข้าด้วยกัน
เกทเวย์ (Gateway)
เป็นอุปกรณ์ที่ทำงานอยู่ในระดับ Transport Layer จนถึง Application Layer ของ OSI Model มีหน้าที่ในการเชื่อมต่อและแปลงข้อมูลระหว่างเครือข่ายที่แตกต่างกันทั้งในส่วนของโปรโตคอลและสถาปัตยกรรมของเครือข่าย LAN และระบบ Mainframeหรือเชื่อมระหว่างเครือข่าย SNAของ IBM กับ DECNet ของ DEC เป็นต้น โดยปกติ Gateway มักจะเป็น Software Packageที่ใช้ในงานบนเครื่องคอมพิวเตอร์เครื่องใดเครื่องหนึ่ง (ซึ่งทำให้เครื่องนั้นมีสถานะเป็น Gateway)และมักใช้สำหรับเชื่อม Workstation เข้าสู่เครื่องที่เป็นเครื่องหลัก ทำให้เครื่องที่เป็น Workstationสามารถทำงานติดต่อกับเครื่องหลักได้โดยไม่ต้องกังวลเกี่ยวกับข้อแตกต่างของระบบเลย
การสื่อสารด้วยดาวเทียม  (Satellite Transmission)
             ที่จริงดาวเทียมก็คือสถานีไมโครเวฟลอยฟ้านั่นเอง  ซึ่งทำหน้าที่ขยายและทบทวนสัญญาณข้อมูล  รับและส่งสัญญาณข้อมูลกับสถานีดาวเทียม ที่อยู่บนพื้นโลก  สถานีดาวเทียมภาคพื้นจะทำการส่งสัญญาณข้อมูล ไปยังดาวเทียมซึ่งจะหมุนไปตามการหมุนของโลกซึ่งมีตำแหน่งคงที่เมื่อเทียมกับ ตำแหน่งบนพื้นโลก  ดาวเทียมจะถูกส่งขึ้นไปให้ลอยอยู่สูงจากพื้นโลกประมาณ  23,300  กม.  เครื่องทบทวนสัญญาณของดาวเทียม (Transponder)  จะรับสัญญาณข้อมูลจากสถานีภาคพื้นซึ่งมีกำลังอ่อนลงมากแล้วมาขยาย   จากนั้นจะทำการทบทวนสัญญาณ และตรวจสอบตำแหน่งของสถานีปลายทาง  แล้วจึงส่งสัญญาณข้อมูลไปด้วยความถี่ในอีกความถี่หนึ่งลงไปยังสถานีปลายทาง  การส่งสัญญาณข้อมูลขึ้นไปยังดาวเทียมเรียกว่า  "สัญญาณอัปลิงก์"
(Up-link) และการส่งสัญญาณข้อมูลกลับลงมายังพื้นโลกเรียกว่า "สัญญาณ ดาวน์-ลิงก์ (Down-link)
              ลักษณะของการรับส่งสัญญาณข้อมูลอาจจะเป็นแบบจุดต่อจุด (Point-to-Point)  หรือแบบแพร่สัญญาณ (Broadcast)  สถานีดาวเทียม 
1 ดวง สามารถมีเครื่องทบทวนสัญญาณดาวเทียมได้ถึง  25 เครื่อง   และสามารถครอบคลุมพื้นที่การส่งสัญญาณได้ถึง  1 ใน ของพื้นผิวโลก  ดังนั้นถ้าจะส่งสัญญาณข้อมูลให้ได้รอบโลกสามารถทำได้โดยการส่งสัญญาณผ่านสถานีดาวเทียมเพียง  3  ดวงเท่านั้น

ระหว่างสถานีดาวเทียม  2  ดวง  ที่ใช้ความถี่ของสัญญาณเท่ากันถ้าอยู่ใกล้กันเกินไปอาจจะทำให้เกิดการรบกวนสัญญาณ ซึ่งกันและกันได้  เพื่อหลีกเลี่ยงการรบกวน  หรือชนกันของสัญญาณดาวเทียม จึงได้มีการกำหนดมาตรฐานระยะห่างของสถานีดาวเทียม และย่านความถี่ของสัญญาณดังนี้
1.             ระยะห่างกัน  4 องศา  (วัดมุมเทียงกับจุดศูนย์กลางของโลก)  ให้ใช้ย่านความถี่ของสัญญาณ  4/6 จิกะเฮิรตซ์  หรือย่าน C แบนด์โดยมีแบนด์วิดท์ของสัญญาณอัป-ลิงก์เท่ากับ  5.925-6.425 จิกะเฮิรตซ์  และมีแบนด์วิดท์ของสัญญาณดาวน์-ลิงก์เท่ากับ  3.7-4.2 จิกะเฮิรตซ์
2.             ระยะห่างกัน  3 องศา  ให้ใช้ย่านความถี่ของสัญญาณ  12/14  จิกะเฮิรตซ์  หรือย่าน KU แบนด์  โดยมีแบนด์วิดท์ของสัญญาณอัป-ลิงก์เท่ากับ  14.0-14.5  จิกะเฮิรตซ์  และมีแบนด์วิดท์ของสัญญาณดาวน์-ลิงก์เท่ากับ  11.7-12.2 จิกะเฮิรตซ์ 
             นอกจากนี้สภาพอากาศ เช่น ฝนหรือพายุ  ก็สามารถทำให้สัญญาณผิดเพี้ยนไปได้เช่นกัน
             สำหรับการส่งสัญญาณข้อมูลนั้นในแต่ละเครื่องทบทวนสัญญาณจะมีแบนด์วิดท์เท่ากับ  36  เมกะเฮิรตซ์  และมีอัตราเร็วการส่งข้อมูลสูงสุดเท่ากับ  50 เมกะบิตต่อวินาที
             ข้อเสีย ของการส่งสัญญาณข้อมูลทางดาวเทียมคือ  สัญญาณข้อมูลสามารถถูกรบกวนจากสัญญาณภาคพื้นอื่น ๆ ได้  อีกทั้งยังมีเวลาประวิง
(Delay Time)  ในการส่งสัญญาณเนื่องจากระยะทางขึ้น-ลง ของสัญญาณ  และที่สำคัญคือ มีราคาสูงในการลงทุนทำให้ค่าบริการสูงตามขึ้นมาเช่นกัน  
         การส่งสัญญาณข้อมูลไมโครเวฟมักใช้กันในกรณีที่การติดตั้งสายเคเบิลทำได้ไม่สะดวก เช่น ในเขตเมืองใหญ่ ๆ หรือในเขตที่ป่าเขา  แต่ละสถานีไมโครเวฟจะติดตั้งจานส่ง-รับสัญญาณข้อมูล  ซึ่งมีเส้นผ่าศูนย์กลางประมาณ  10 ฟุต  สัญญาณไมโครเวฟเป็นคลื่นย่านความถี่สูง 
(2-10 จิกะเฮิรตซ์)  เพื่อป้องกันการแทรกหรือรบกวนจากสัญญาณอื่น ๆ  แต่สัญญาณอาจจะอ่อนลง  หรือหักเหได้ในที่มีอากาศร้อนจัด  พายุหรือฝน  ดังนั้นการติดตั้งจาน ส่ง-รับสัญญาณจึงต้องให้หันหน้าของจานตรงกัน  และหอยิ่งสูงยิ่งส่งสัญญาณได้ไกล
          ปัจจุบันมีการใช้การส่งสัญญาณข้อมูลทางไมโครเวฟกันอย่างแพร่หลาย  สำหรับการสื่อสารข้อมูลในระยะทางไกล ๆ หรือระหว่างอาคาร  โดยเฉพาะในกรณีที่ไม่สะดวกที่จะใช้สายไฟเบอร์ออปติก  หรือการสื่อสารดาวเทียม  อีกทั้งไมโครเวฟยังมีราคาถูกกว่า  และติดตั้งได้ง่ายกว่า  และสามารถส่งข้อมูลได้คราวละมาก ๆ ด้วย  อย่างไรก็ตามปัจจัยสำคัญที่ทำให้สื่อกลางไมโครเวฟเป็นที่นิยม  คือราคาที่ถูกกว่า
สื่อกลางประเภทไม่มีสาย

ระบบไมโครเวฟ  (Microwave System)
               การส่งสัญญาณข้อมูลไปกลับคลื่นไมโครเวฟเป็นการส่งสัญญาณข้อมูลแบบรับช่วงต่อๆ กันจากหอ (สถานี)  ส่ง-รับสัญญาณหนึ่งไปยังอีกหอหนึ่ง  แต่ละหาจะครอบคลุมพื้นที่รับสัญญาณประมาณ 30-50  กม.  ระยะห่างของแต่ละหอคำนวณง่าย ๆ ได้จาก
สูตร
                  d  = 7.14 (1.33h)1/2 กม.
         เมื่อ     d = ระยะห่างระหว่างหอ  h = ความสูงของหอ  

ข้อดีของใยแก้วนำแสดงคือ
1. ป้องกันการรบกวนจากสัญญาณไฟฟ้าได้มาก
2. ส่งข้อมูลได้ระยะไกลโดยไม่ต้องมีตัวขยายสัญญาณ
3. การดักสัญญาณทำได้ยาก ข้อมูลจึงมีความปลอดภัยมากกว่าสายส่งแบบอื่น
4. ส่งข้อมูลได้ด้วยความเร็วสูงและสามารถส่งได้มาก ขนาดของสายเล็กและน้ำหนักเบา
ใยแก้วนำแสง (Optic Fiber)
              ทำจากแก้วหรือพลาสติกมีลักษณะเป็นเส้นบางๆ คล้าย เส้นใยแก้วจะทำตัวเป็นสื่อในการส่งแสงเลเซอร์ที่มีความเร็วในการส่งสัญญาณเท่ากับ ความเร็วของแสง

              หลักการทั่วไปของการสื่อสารในสายไฟเบอร์ออปติกคือการเปลี่ยนสัญญาณ (ข้อมูล)  ไฟฟ้าให้เป็นคลื่นแสงก่อน  จากนั้นจึงส่งออกไปเป็นพัลส์ ของแสง ผ่านสายไฟเบอร์ออปติกสายไฟเบอร์ออปติกทำจากแก้วหรือพลาสติกสามารถส่งลำแสง ผ่านสายได้ทีละหลาย ๆ ลำแสงด้วยมุมที่ต่างกัน  ลำแสงที่ส่งออกไปเป็นพัลส์นั้นจะสะท้อนกลับไปมาที่ผิวของสายชั้นในจนถึงปลายทาง
                จากสัญญาณข้อมูลซึ่งอาจจะเป็นสัญญาณอนาล็อกหรือดิจิตอล จะผ่านอุปกรณ์ที่ทำหน้าที่มอดูเลตสัญญาณเสียก่อน  จากนั้นจะส่งสัญญาณมอดูเลต ผ่านตัวไดโอดซึ่งมี  2  ชนิดคือ  LED  ไดโอด  (light Emitting Diode)  และเลเซอร์ไดโอด หรือ  ILD ไดโอด  (Injection Leser Diode)  ไดโอดจะมีหน้าที่เปลี่ยนสัญญาณมอดูเลตให้เป็นลำแสงเลเซอร์ซึ่งเป็นคลื่นแสงในย่านที่มองเห็นได้  หรือเป็นลำแสงในย่านอินฟราเรดซึ่งไม่สามารถมองเห็นได้  ความถี่ย่านอินฟราเรดที่ใช้จะอยู่ในช่วง 1014-1015 เฮิรตซ์  ลำแสงจะถูกส่งออกไปตามสายไฟเบอร์ออปติก  เมื่อถึงปลายทางก็จะมีตัวโฟโต้ไดโอด (Photo Diode)  ที่ทำหน้าที่รับลำแสงที่ถูกส่งมาเพื่อเปลี่ยนสัญญาณแสงให้กลับไปเป็นสัญญาณมอดูเลตตามเดิม  จากนั้นก็จะส่งสัญญาณผ่านเข้าอุปกรณ์ดีมอดูเลต  เพื่อทำการดีมอดูเลตสัญญาณมอดูเลตให้เหลือแต่สัญญาณข้อมูลที่ต้องการ
               สายไฟเบอร์ออปติกสามารถมีแบนด์วิดท์  (BW)  ได้กว้างถึง  3 จิกะเฮิรตซ์ (1 จิกะ = 109) และมีอัตราเร็วในการส่งข้อมูลได้ถึง  1 จิกะบิต ต่อวินาที  ภายในระยะทาง  100 กม.  โดยไม่ต้องการเครื่องทบทวนสัญญาณเลย  สายไฟเบอร์ออปติกสามารถมีช่องทางสื่อสารได้มากถึง  20,000-60,000  ช่องทาง  สำหรับการส่งข้อมูลในระยะทางไกล ๆ ไม่เกิน  10 กม.  จะสามารถมีช่องทางได้มากถึง 100,000  ช่องทางทีเดียว